Project on grammars | Computer Science homework help

Objective: To acquire a comprehensive understanding of the application of grammars and formal language theory to computing languages. Given:

Consider the following set of productions:

P01: FN FN–HEAD   FN–BODY
P02: FN–HEAD TYPE   id   (  PARAM–LIST   )
P03: TYPE char
P04: TYPE int
P05: TYPE real
P06: PARAM–LIST TYPE   id
P07: PARAM–LIST PARAM–LIST   ,   TYPE   id
P08: FN–BODY {   VAR–DECL   STMT   return   (   EXPRESN   )   ;   }
P09: VAR–DECL λ
P10: VAR–DECL TYPE   ID–LIST   ;
P11: VAR–DECL VAR–DECL   TYPE   ID–LIST   ;
P12: ID–LIST id
P13: ID–LIST ID–LIST   ,  id
P14: STMT λ
P15: STMT SIMPLE–STMT
P16: STMT SELECT–STMT
P17: STMT REPEAT–STMT
P18: STMT SEQUENCE–STMT
P19: SIMPLE–STMT ASSIGN–STMT
P20: SIMPLE–STMT FN–CALL–STMT
P21: ASSIGN–STMT var   =   EXPRESN   ;
P22: EXPRESN ARITH–EXP
P23: EXPRESN BOOL–EXP
P24: ARITH–EXP TERM
P25: ARITH–EXP ARITH–EXP   ADD–OP   TERM
P26: ADD–OP +
P27: ADD–OP
P28: TERM FAC
P29: TERM TERM   MUL–OP   FAC
P30: MUL–OP *
P31: MUL–OP /
P32: FAC (   ARITH–EXP   )
P33: FAC OPD
P34: OPD var
P35: OPD const
P36: BOOL–EXP RELN–EXP
P37: BOOL–EXP LOGIC–EXP
P38: RELN–EXP OPD   RELN–OPR   OPD
P39: RELN–OPR ==
P40: RELN–OPR !=
P41: RELN–OPR <
P42: RELN–OPR <=
P43: RELN–OPR >
P44: RELN–OPR >=
P45: LOGIC–EXP OPD   LOGIC–OPR   OPD
P46: LOGIC–EXP LOGIC–OPR   OPD
P47: LOGIC–OPR and
P48: LOGIC–OPR or
P49: LOGIC–OPR not
P50: FN–CALL–STMT id   (  ARG–LIST   )   ;
P51: ARG–LIST λ
P52: ARG–LIST id
P53: ARG–LIST ARG–LIST   ,   id
P54: SELECT–STMT if   CONDITION   STMT   else   STMT
P55: CONDITION (   BOOL–EXP   )
P56: REPEAT–STMT DO–STMT
P57: REPEAT–STMT WHILE–STMT
P58: DO–STMT do   {   STMT   }   while   CONDITION   ;
P59: WHILE–STMT while   CONDITION   do   {   STMT   }   ;
P60: SEQUENCE–STMT STMT   STMT
Instructions:
    1. (30 points)   Rewrite the set of productions above in Extended Backus-Naur Form (EBNF).
    1. (35 points)   Using a Push Down Automaton (PDA), determine if the following function is valid code according to the given set of productions.
int Max ( int x, int y ) 
    { 
        int z ; 

        if ( x >y ) 
            z = x ; 
        else 
            z = y ; 

        return ( z ) ; 
    }

    1. (35 points)   Validate your answer in (2) by illustrating it with a derivation tree
Deliverable:

Submit a paper Times New Roman font, 12 pt., double-space lines).   The project must contain an introduction which includes the purpose of the project.  

 

 

 

 

I attached the answers to 1 and 2 just look to make sure correct and write a paper.